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Phase ordering on small-world networks with nearest-neighbor edges
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We investigate global phase coherence in a system of coupled oscillators on small-world networks con-
structed from a ring with nearest-neighbor edges. The effects of both thermal noise and quenched randomness
on phase ordering are examined and compared with the global coherence in the correspondingXY model
without quenched randomness. It is found that in the appropriate regime phase ordering emerges at finite
temperatures, even for a tiny fraction of shortcuts. The nature of the phase transition is also discussed.
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It is now known that diverse systems in nature may ha
the same topological structure as thesmall-world networks,
first modeled by Watts and Strogatz~WS! @1#. A small-world
network is usually constructed from a locally connect
regular network with given interaction rangek, where some
of the edges are randomly ‘‘rewired,’’ creating long-ran
‘‘shortcuts.’’ The small-world effect in such a model refers
a high degree of clustering as well as the small character
path lengthl ; logN/log(2k21), which is defined to be the
average of the shortest distance between two vertices in
network of sizeN ~i.e., N vertices! @1–3#. So far, a major
number of studies have mostly paid attention to the g
metrical properties described by the above two quantities.
the other hand, some recent studies have considered dyn
cal systems put on small-world networks@2–6#, to find, e.g.,
faster propagation of information and better computatio
power. Such studies of dynamical systems, which appare
have wide applicability in physics, computational scien
and biological science, have usually been performed
small-world networks with the interaction rangek>2. The
original WS model is poorly defined fork51 since the finite
probability of isolated vertices induced by rewiring of th
connections between the vertices yields divergence of
characteristic path length of the system. This difficulty m
be circumvented by modifying the network constructi
method in such a way that shortcuts are added without
moving local edges@7#. This construction method leads to a
increase in the number of total edges in the system; this
contrast with the WS model where the total number of ed
is conserved.

In this paper we study a set of nonlinear coupled osci
tors on small-world networks constructed from rings w
nearest-neighbor edges (k51), with attention to the emer
gence of long-range phase ordering as the number of sh
cuts is increased. In particular, the effects of thermal no
together with quenched randomness on phase ordering
explored and the aspects of the global coherence are c
pared with those in the correspondingXY model without
quenched randomness.

*Present address: School of Physics, Korea Institute for Advan
Study, Seoul 130-012, Korea.
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The small-world network considered in this paper is co
structed in the following way: First, a one-dimensional reg
lar network with nearest-neighbor connections betweenN
vertices is constructed, with the periodic boundary con
tions imposed. Then shortcuts are added with the probab
P, between randomly chosen pairs of vertices. While lo
connections remain intact, more than one edge between
two vertices as well as any edge connecting a vertex to it
are prohibited, although such multiconnections and self c
nections have been shown not to change the qualitative
havior of the WS model@7#. Throughout this paper the prob
ability P is defined to be the ratio of the number of tot
long-range connections~shortcuts! to the number of the tota
local edges in the network.

At each vertex of this small-world network is located a
oscillator; an edge connecting two vertices represents c
pling between the two oscillators at those two vertices. D
scribing the state of thei th oscillator located on vertexi by
its phasef i , we write the set of equations of motion gov
erning the dynamics of theN oscillator system (i
51,2, . . . ,N):

ḟ i~ t !5v i2J (
j PL i

sin~f i2f j !1h i~ t !, ~1!

where the intrinsic frequencyv i of the i th oscillator are
quenched random variables distributed according to, e.g.
Gaussian distribution with variances2. The setL i denotes
the neighborhood of vertexi, consisting of the vertices con
nected to vertexi ~via either local edges or shortcuts! with
the coupling strengthJ. The last termh i on the right-hand
side represents thermal noise, i.e., independent white n
with zero mean and correlations

^h i~ t !h j~ t8!&52Td i j d~ t2t8!,

where the noise levelT(>0) may be regarded as the tem
perature of the system with the Boltzmann constant set e
to unity (kB[1). When all the oscillators are identical wit
no quenched randomness (s250), Eq.~1! describes the sys
tem of classicalXYspins, for which the Hamiltonian is given
by
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i 51

N

cos~f i2f j !. ~2!

For example,f i may represent the angular direction of t
two-dimensional spin or the phase of the superconduc
order parameter at vertexi. The investigation of the phas
transition in theXY model on a WS small-world network ha
revealed the presence of long-range order at finite temp
tures, even for a tiny fraction of shortcuts@5#. On the other
hand, in the absence of the thermal noise (T50), Eq. ~1!
describes the dynamics of a set of coupled oscillators, wh
has also been studied on a WS small-world network
found to exhibit collective synchronization effectively@6#.
These two systems can be described by Eq.~1! in the appro-
priate limits; in this respect Eq.~1! provides a very interest
ing model, which allows us to explore both the dynam
synchronization transition driven by quenched randomn
and the thermodynamic phase transition by thermal no
together. When the setL i includes the wholeN oscillators,
Eq. ~1! describes the dynamics of the fully connected os
lators with the normalized coupling strengthJ/N. The phase
synchronization in such a globally coupled system has b
extensively studied@8#, and the increase of the critical cou
pling strength due to the thermal noise has been found@9#.

We here investigate the effects of quenched randomn
together with thermal noise on the small-world network co
structed as above. Collective behavior of the coupled os
lators on such a small-world network is conveniently d
scribed by the order parameter

m[F K U1

N (
j

eif jU L G , ~3!

where^•••& represents the thermal average with respec
the thermal noise. For a small-world network, it is also n
essary to take the average over different network real
tions, denoted by@•••#. To compute the order parameter, w
have integrated numerically the set of equations of mot
given by Eq.~1! through the use of Heun’s method@10# with
the discrete time stepDt50.05. Typically, while the equa
tions have been integrated forNt543103 time steps, the
data from the firstNt/2 steps have been discarded in meas
ing quantities of interest. BothDt andNt have been varied to
verify that the measured quantities are precise enough
the networks of various sizes, up toN51600, have been
considered. For each network size, we have performed
independent runs with different configurations of the intr
sic frequencies as well as different network realizations, o
which averages have been taken.

Figure 1 displays the obtained order parameterm versus
the rescaled temperatureT/J at various values of the fractio
P on a network of sizeN5800 ~a! in the absence of the
quenched randomness (s250) and~b! in the presence of a
finite amount of randomness (s250.05). Thus Fig. 1~a! ex-
hibits the behavior of the magnetization with temperature
the correspondingXY model. In the high-temperature lim
(T/J→`), phases of the oscillators are distributed uniform
on the interval@0,2p), leading to the absence of macr
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scopic coherence characterized bym5O(N21/2). In the op-
posite low-temperature limit (T/J→0), all the oscillators be-
come synchronized forPÞ0 to givem51, regardless of the
detailed structure of the network. On the other hand, F
1~b! indicates that the presence of randomness tends to
press synchronization and macroscopic coherence is
achieved even at low temperatures for small but finite val
of P. Indeed at low temperatures, the value of the order
rameter forP&0.2 in Fig. 1~b! as well as that forP50 in
Fig. 1~a! has been observed to diminish as the system sizN
gets larger, suggesting the absence of coherence (m50) in
the thermodynamic limit. ForP*0.3 in Fig. 1~b!, in con-
trast, the order parameter at low temperatures tends to
crease with the system size, indicating the emergence of
chronization.

It is thus manifested in Fig. 1 that phase ordering exhib
strong dependence on the fractionP. Regardless of the
quenched randomness, in particular, the phases do not o
in the absence of shortcuts (P50), which is consistent with
the known result in one dimension@11#. When some fraction
of the shortcuts comes into the system, on the other hand
dynamics of the system changes dramatically, giving rise
phase ordering. Here the critical value of the fractionPc

FIG. 1. Phase order parameterm versus the rescaled temperatu
T/J on the small-world network with the local interaction rangek
51 and sizeN5800 for the variance~a! s250.0; ~b! s250.05.
The error bars estimated by the standard deviation have app
mately the sizes of the symbols and the lines are merely guide
eyes.
4-2
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beyond which the ordering emerges grows as the random
is increased. Namely, larger fractions of the long-ranged c
nections are needed for ordering in the system with stron
quenched randomness. For instance, Fig. 1~a! shows the
emergence of ordering even forP50.1 at low temperatures
which impliesPc&0.1. On the other hand, ordering in Fi
1~b! is observed forP*0.3 ~but not forP&0.2 even at low
temperatures!, apparently indicating that 0.2&Pc&0.3. In
this case of finite randomness (s250.05), extensive simula
tions yield Pc'0.23 in the low-temperature limit. Note tha
the critical fractionPc in general increases with the varian
s2 and the temperatureT, reflecting that quenched random
ness as well as thermal noise tends to suppress synchro
tion.

To explore the nature of the phase transition and to ac
rately determine the critical temperatureTc , we examine the
behavior of the order parameter by means of the finite-s
scaling analysis. Recalling the critical behavior of the ord
parameter in the thermodynamic limit

m;~Tc2T!b ~4!

with the critical exponentb, we expect the finite-size scalin
form @5#

m5N2b/ n̄F„~T2Tc!N
1/n̄
… ~5!

with an appropriate scaling functionF, where the critical
exponentn̄ describes the divergence of the correlation v
umejV at Tc @12,13#:

jV;uT2Tcu2 n̄. ~6!

According to this scaling, the plot ofmNb/ n̄ versusT should
give a unique crossing point atTc . After b/ n̄ and Tc are
determined from the plot ofmNb/ n̄ versusT, one then may
use

lnFdm

dTG
Tc

5
12b

n̄
ln N1const., ~7!

to obtain the value of (12b)/ n̄; this, combined with the
known value ofb/ n̄, finally gives the values ofb and n̄.

Figure 2 shows the determination ofTc on the small-
world network withk51 andP50.5 in the absence of th
quenched randomness (s250). Varying the value ofb/ n̄,
we find thatb/ n̄'0.25 gives the well-defined crossing poi
at Tc'1.02 ~in units of J). In the inset of Fig. 2, the least
square fit to Eq.~7! gives (12b)/ n̄'0.24, which, combined
with b/ n̄'0.25, yieldsb'0.51 andn̄'2.04. These results
demonstrate that the small-world network constructed fr
rings with nearest-neighbor edges is also a mean-field
tem, which has the valuesb51/2 andn51/2 @8#. Further,
the obtained value ofn̄ close to 2 indicates that the upp
critical dimension of the phase ordering transition is fo
@12#, the same as that on the usual small-world network
the WS type@5#.
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Similarly, the scaling form in the presence of finite ra
domness is plotted in Fig. 3, displaying the determination
Tc and exponents fors250.01. Via the same analysis as
Fig. 2, we obtainTc'0.96 ~again in units ofJ), which is
smaller than the value in the system without quenched r
domness. Thus the quenched randomness tends to sup
phase ordering, lowering the critical temperature. The co
sponding values of the exponentsb'0.49 andn̄'1.96 are
essentially the same as those in the absence of random
(s250). This concludes that the coupled oscillator syst
on a small-world network with the number of connectio
given byO(N) displays a mean-field synchronization tran
tion even for the shortest local-interaction rangek51, simi-
larly to the system on a globally connected network with t
much larger number of connectionsO(N2).

Figure 4 displays the phase diagram in the space of
rescaled standard deviations/J, the rescaled temperatur

FIG. 2. Finite-size scaling of the phase order parameter@see Eq.
~5!# on the small-world network withk51 andP50.5, in the ab-
sence of quenched randomness (s250). There exists a unique

crossing point atTc'1.02. Inset gives the slope (12b)/ n̄'0.24,

which, combined withb/ n̄'0.25 found in the main panel, results i

b'0.51 andn̄'2.04.

FIG. 3. Finite-size scaling of the phase order parameter on
small-world network withk51 and P50.5 in the presence of a
finite amount of randomness (s250.01). There is given a unique
crossing point atTc'0.96, which is apparently smaller thanTc

'1.02 for s250. Inset: The slope (12b)/ n̄'0.26 is obtained,

which, combined withb/ n̄'0.25, yieldsb'0.49 andn̄'1.96.
4-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 047104
T/J, and the logarithmic fraction2 log P. The data for the
boundary surface separating ordered~O! and disordered~D!
phase have been obtained from the finite-size scaling an
sis, with the temperatureT varied for given variances2 and

FIG. 4. Phase diagram of the oscillator system on a small-w
network. The data points on the phase boundary have been obt
from the finite-size scaling of the order parameter in Eq.~5!. O and
D represent the ordered state and the disordered one, respec
Insets: Phase boundaries on the planesT50, s50, andP51, re-
spectively.
,

A.

ys
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the fractionP. In the absence of both quenched randomn
and thermal noise (s25T50), the frequencies of the oscil
lators are already ordered even without any long-range c
nections, and the phases can be ordered through the cou
between the oscillators. Therefore we have the critical fr
tion Pc50 in this case, which is implied in the first and th
second insets of Fig. 4. The third inset displays the bound
on the plane ofP51, which exhibits the interplay of the two
types of the randomness~thermal noise and quenched ra
domness! in suppressing the phase ordering.

In summary, we have examined phase ordering in the s
tem of coupled oscillators on small-world networks co
structed from rings with nearest-neighbor edges. The ph
ordering has been found to depend strongly upon the frac
P of the long-range connections to the short-range lo
ones. In particular, such ordering, which is absent atP50
for nonzero quenched randomness (s2Þ0), emerges at finite
temperatures asP is increased from zero. The critical valu
Pc , below which ordering does not set in, apparently va
ishes in the limitsT→0 and s2→0, increasing from zero
with the randomness. The phase boundary between the
dered state and the disordered one, obtained from the fin
size scaling analysis, has been found to be of the mean-
type. Finally, we note that the disordered state in Fig. 4 r
resents phase disorder, thus the possibility of a different t
of order such as frequency order may not be excluded,
investigation of which is left for further study.
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