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Phase ordering on small-world networks with nearest-neighbor edges
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We investigate global phase coherence in a system of coupled oscillators on small-world networks con-
structed from a ring with nearest-neighbor edges. The effects of both thermal noise and quenched randomness
on phase ordering are examined and compared with the global coherence in the correspohdnaglel
without quenched randomness. It is found that in the appropriate regime phase ordering emerges at finite
temperatures, even for a tiny fraction of shortcuts. The nature of the phase transition is also discussed.
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It is now known that diverse systems in nature may have The small-world network considered in this paper is con-
the same topological structure as tmall-world networks  structed in the following way: First, a one-dimensional regu-
first modeled by Watts and Strogd/S) [1]. A small-world  |ar network with nearest-neighbor connections betwden
network is usually constructed from a locally connectedvertices is constructed, with the periodic boundary condi-
regular network with given interaction rangewhere some  tions imposed. Then shortcuts are added with the probability
of the edges are randomly “rewired,” creating long-rangep, petween randomly chosen pairs of vertices. While local
“shortcuts.” The small-world effect in such a model refers to connections remain intact, more than one edge between any
a high degree of clustering as Welllas Fhe small characteristigyq vertices as well as any edge connecting a vertex to itself
path length” ~log N/log(%—1), which is defined to be the are prohibited, although such multiconnections and self con-
average of the shortest distance between two vertices in thg,fions have been shown not to change the qualitative be-
netwtc))rk 0]]: S'tZ%N ("ﬁ" N vertltt:|e$ [1_53].tt80t.far, ta rtT;]ajor havior of the WS mod€]7]. Throughout this paper the prob-
number of studies have mostly paig attention 10 e 9eoz,uyy b s defined to be the ratio of the number of total
metrical properties described by the above two quantities. O :
the other hand, some recent studies have considered dynarqug-range qonnect|or(shortcut$ to the number of the total
cal systems put on small-world networs-6], to find, e.g., ocal edges in the network. :
faster propagation of information and better computational At €ach vertex of this small-world network is located an
power. Such studies of dynamical systems, which apparentlScillaor; an edge connecting two vertices represents cou-
have wide applicability in physics, computational Science,phn.g'between the two.oscnlat.ors at those two vertlges. De-
and biological science, have usually been performed ofcribing the state of theth oscillator located on verteixby
small-world networks with the interaction range=2. The  its phaseg;, we write the set of equations of motion gov-
original WS model is poorly defined fdr=1 since the finite €rning the dynamics of theN oscillator system i(
probability of isolated vertices induced by rewiring of the =1,2, ... N):
connections between the vertices yields divergence of the
characteristic path length of the system. This difficulty may - _ ; _
be circumvented by modifying the network construction Pi= J,-EEAi Sin(gi= i)+ m(v), @
method in such a way that shortcuts are added without re-
moving local edge§7]. This construction method leads to an where the intrinsic frequencw; of the ith oscillator are
increase in the number of total edges in the system; this is iguenched random variables distributed according to, e.g., the
contrast with the WS model where the total number of edgesaussian distribution with varianae®. The setA; denotes
is conserved. the neighborhood of verteix consisting of the vertices con-

In this paper we study a set of nonlinear coupled oscillanected to vertex (via either local edges or shortcutwith
tors on small-world networks constructed from rings with the coupling strengtd. The last termz; on the right-hand
nearest-neighbor edgek=<1), with attention to the emer- side represents thermal noise, i.e., independent white noise
gence of long-range phase ordering as the number of shonith zero mean and correlations
cuts is increased. In particular, the effects of thermal noise
together with quenched randomness on phase ordering are (i) my(t"))=2T5;6(t—t"),
explored and the aspects of the global coherence are com-
pared with those in the correspondixgy model without where the noise level(=0) may be regarded as the tem-
guenched randomness. perature of the system with the Boltzmann constant set equal

to unity (kg=1). When all the oscillators are identical with

no quenched randomness?=0), Eq.(1) describes the sys-
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two-dimensional spin or the phase of the superconducting
order parameter at vertax The investigation of the phase
transition in theX'Y model on a WS small-world network has
revealed the presence of long-range order at finite tempera-
tures, even for a tiny fraction of shortcyts]. On the other
hand, in the absence of the thermal noige=Q), Eq. (1)
describes the dynamics of a set of coupled oscillators, which
has also been studied on a WS small-world network and
found to exhibit collective synchronization effective[g]. (a)
These two systems can be described by (Epin the appro-
priate limits; in this respect Ed1) provides a very interest-
ing model, which allows us to explore both the dynamic
synchronization transition driven by quenched randomness
and the thermodynamic phase transition by thermal noise
together. When the sét; includes the wholeéN oscillators,
Eq. (1) describes the dynamics of the fully connected oscil-
lators with the normalized coupling strengthN. The phase
synchronization in such a globally coupled system has been
extensively studiedl8], and the increase of the critical cou-
pling strength due to the thermal noise has been fq@hd

We here investigate the effects of quenched randomness

:

together with thermal noise on the small-world network con- T/
structed as above. Collective behavior of the coupled oscil-
lators on such a small-world network is conveniently de- (b)

scribed by the order parameter

oel{[i3 e

FIG. 1. Phase order parametawversus the rescaled temperature

T/J on the small-world network with the local interaction rarige
> ’ (3) =1 and sizeN=800 for the variancéa) ¢>=0.0; (b) ¢*=0.05.

The error bars estimated by the standard deviation have approxi-

mately the sizes of the symbols and the lines are merely guides to
where(- - -) represents the thermal average with respect t@yes.
the thermal noise. For a small-world network, it is also nec-
essary to take the average over different network realizascopic coherence characterized ay= O(N~?). In the op-
tions, denoted by- - - ]. To compute the order parameter, we posite low-temperature limiff/J—0), all the oscillators be-
have integrated numerically the set of equations of motiortome synchronized fdP+0 to givem=1, regardless of the
given by Eq.(1) through the use of Heun’s methtl0] with  detailed structure of the network. On the other hand, Fig.
the discrete time stept=0.05. Typically, while the equa- 1(b) indicates that the presence of randomness tends to sup-
tions have been integrated fot,=4x10® time steps, the press synchronization and macroscopic coherence is not
data from the firsN,/2 steps have been discarded in measurachieved even at low temperatures for small but finite values
ing quantities of interest. Botht andN; have been varied to of P. Indeed at low temperatures, the value of the order pa-
verify that the measured quantities are precise enough an@dmeter forP<0.2 in Fig. Ab) as well as that foP=0 in
the networks of various sizes, up d=1600, have been Fig. 1(a) has been observed to diminish as the systemisize
considered. For each network size, we have performed 10@ets larger, suggesting the absence of coheremeceQ) in
independent runs with different configurations of the intrin-the thermodynamic limit. FoP=0.3 in Fig. Xb), in con-
sic frequencies as well as different network realizations, ovetrast, the order parameter at low temperatures tends to in-
which averages have been taken. crease with the system size, indicating the emergence of syn-

Figure 1 displays the obtained order parameateversus chronization.

the rescaled temperatuféJ at various values of the fraction It is thus manifested in Fig. 1 that phase ordering exhibits
P on a network of sizeN=800 (a) in the absence of the strong dependence on the fractiéh Regardless of the
quenched randomness{=0) and(b) in the presence of a quenched randomness, in particular, the phases do not order
finite amount of randomnessr¢=0.05). Thus Fig. (8 ex-  in the absence of shortcut® € 0), which is consistent with
hibits the behavior of the magnetization with temperature irthe known result in one dimensidal]. When some fraction
the correspondingY model. In the high-temperature limit of the shortcuts comes into the system, on the other hand, the
(T/J— =), phases of the oscillators are distributed uniformlydynamics of the system changes dramatically, giving rise to
on the interval[0,27), leading to the absence of macro- phase ordering. Here the critical value of the fractiep

047104-2



BRIEF REPORTS PHYSICAL REVIEW E 65 047104

beyond which the ordering emerges grows as the randomness S R=T705 —
is increased. Namely, larger fractions of the long-ranged con- - "‘u_ 200 —xm
nections are needed for ordering in the system with stronger 4 tme, T, 300 =

quenched randomness. For instance, Fi@ Ehows the
emergence of ordering even fBr=0.1 at low temperatures,
which impliesP.=<0.1. On the other hand, ordering in Fig.
1(b) is observed folP=0.3 (but not forP<0.2 even at low
temperatures apparently indicating that 02P.<0.3. In
this case of finite randomness{=0.05), extensive simula-
tions yield P.~0.23 in the low-temperature limit. Note that
the critical fractionP in general increases with the variance ey
o? and the temperatur®, reflecting that quenched random- 0.5 0.7 0.9 1.1 1.3 1.5
ness as well as thermal noise tends to suppress synchroniza- T/J
tion.

To explore the nature of the phase transition and to accu- F!G- 2. Finite-size scaling of the phase order paranfetee Eq.
rately determine the critical temperatufg, we examine the (9] on the small-world network witfk=1 andP=0.5, in the ab-
behavior of the order parameter by means of the finite-siz&€"ce °f quenched randomness’£0). There exists a unique

scaling analysis. Recalling the critical behavior of the orde(€rossing point aff.~1.02. Inset gives the slope (158)/»~0.24,
parameter in the thermodynamic limit which, combined withB/v~0.25 found in the main panel, results in

B~0.51 andv~2.04.

m~(T,—T)# (4)

) - o ) Similarly, the scaling form in the presence of finite ran-
with the critical exponeng, we expect the finite-size scaling gomness is plotted in Fig. 3, displaying the determination of
form [5] T. and exponents fos?=0.01. Via the same analysis as in

N 7 Fig. 2, we obtainT,~0.96 (again in units ofJ), which is
m=N FIT-ToN™) ) smaller than the value in the system without quenched ran-
domness. Thus the quenched randomness tends to suppress
phase ordering, lowering the critical temperature. The corre-
sponding values of the exponents=0.49 andv~1.96 are
essentially the same as those in the absence of randomness
(02=0). This concludes that the coupled oscillator system
on a small-world network with the number of connections
Aecorting o i scaing the lo ¥ verssT shous 95 27100 USRS 2 e e Senionegion st
give a unique crossing point &t.. After /v andTc are |5y to the system on a globally connected network with the
determined from the plot o N?” versusT, one then may much larger number of connectiofN?).
use Figure 4 displays the phase diagram in the space of the
rescaled standard deviatiaw/J, the rescaled temperature

with an appropriate scaling functioR, where the critical

exponent? describes the divergence of the correlation vol-
umeéy at T [12,13:

E~|T-Tg ", ()

| dm} 178 1 N+ const )
n|—=| =-—=—InN+const.,
dar LIS 5 . 77 N=100 —
e, 200 —x— 1
. — . . 4b e 400
to obtain the value of (% B)/v; this, combined with the ey ™, 1%88 e
known value ofB/v, finally gives the values oB andv. o 3 _“‘»x,:s“s - 007 ¢ —
Figure 2 shows the determination @f on the small- S -“"*"Xx,‘:*"‘:\."‘- % . p,,ﬁ"'i
world network withk=1 andP=0.5 in the absence of the Z ol - \ =
quenched randomness{=0). Varying the value ofg/v, = £-
we find thatB/v~0.25 gives the well-defined crossing point 1+
at T,~1.02 (in units of J). In the inset of Fig. 2, the least- -
- . _ _% - - 0 N
square fit to Eq(7) gives (1 B)/v~0.24, which, combined 05 07 0.9 11 13 15

with B/v~0.25, yieldsB~0.51 andv~2.04. These results T/
demonstrate that the small-world network constructed from

rings with nearest-neighbor edges is also a mean-field sys- F|G. 3. Finite-size scaling of the phase order parameter on the
tem, which has the valugg8=1/2 andv=1/2 [8]. Further,  small-world network withk=1 andP=0.5 in the presence of a
the obtained value of close to 2 indicates that the upper finite amount of randomnessrt=0.01). There is given a unique
critical dimension of the phase ordering transition is fourcrossing point aff.~0.96, which is apparently smaller than,
[12], the same as that on the usual small-world network of~1.02 for o?=0. Inset: The slope (% 3)/v~0.26 is obtained,
the WS type5]. which, combined with3/ v~0.25, yieldsg~0.49 andv~1.96.
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the fractionP. In the absence of both quenched randomness
. R - and thermal noiseq?=T=0), the frequencies of the oscil-
lators are already ordered even without any long-range con-
nections, and the phases can be ordered through the coupling
between the oscillators. Therefore we have the critical frac-
tion P.=0 in this case, which is implied in the first and the
second insets of Fig. 4. The third inset displays the boundary
on the plane oP =1, which exhibits the interplay of the two
types of the randomnegshermal noise and quenched ran-
domnessin suppressing the phase ordering.

In summary, we have examined phase ordering in the sys-
tem of coupled oscillators on small-world networks con-
structed from rings with nearest-neighbor edges. The phase
ordering has been found to depend strongly upon the fraction
P of the long-range connections to the short-range local
ones. In particular, such ordering, which is absenPat0
for nonzero quenched randomnesg# 0), emerges at finite
temperatures aB is increased from zero. The critical value
P., below which ordering does not set in, apparently van-
0 ishes in the limitsT—0 and o®—0, increasing from zero
dNith the randomness. The phase boundary between the or-
network. The data points on the phase boundary have been obtainggred St"’.‘te and th‘? disordered one, obtained from the fm.lte_
from the finite-size scaling of the order parameter in €&§. O and size SC?""“g analysis, has been .found to be of t_he r_nean-fleld
D represent the ordered state and the disordered one, respectiveW.pe' Finally, we note that the dlsordergq state n Fig. 4 rep-
Insets: Phase boundaries on the plafied, o=0, andP=1, re- resents phase disorder, thus the possibility of a different type
spectively. _of ord_er s_uch as fr_equ_ency order may not be excluded, the

investigation of which is left for further study.
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FIG. 4. Phase diagram of the oscillator system on a small-worl

T/J, and the logarithmic fractior-log P. The data for the This work was supported in part by the Ministry of Edu-
boundary surface separating ordef&€) and disorderedD) cation of Korea through the BK21 Prograifti.H. and
phase have been obtained from the finite-size scaling analyM.Y.C.), and in part by the Swedish Natural Research Coun-
sis, with the temperatur€ varied for given variance® and  cil through Contract No. F 5102-659/2008.J.K).
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